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Abstract

In multiple regression problems when covariates can be naturally grouped, it is important to carry

out feature selection at the group and within-group individual variable levels simultaneously. The

existing methods, including the lasso and group lasso, are designed for either variable selection

or group selection, but not for both. We propose a group bridge approach that it is capable of

simultaneous selection at both the group and within-group individual variable levels. The proposed

approach is a penalized regularization method that uses a specially designed group bridge penalty.

It has the powerful oracle group selection property, that is, it can correctly select important groups

with probability converging to one. In contrast, the group lasso method in general does not possess

such an oracle property in group selection. Simulation studies indicate that the group bridge has

superior performance in group and individual variable selection than the group lasso in a wide

range of generating models.
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1 Introduction

Consider the linear regression model

Yi = Xi1β1 + · · ·+ Xidβd + εi, i = 1, . . . , n, (1)

where Yi ∈ IR is the response variable, Xi1, . . . , Xid are covariate variables, βj’s are regression

coefficients, and εi’s are error terms. Assumed that the covariates can be naturally grouped. We are

interested in simultaneously selecting important groups as well as important individual variables

within the selected groups. We propose a group bridge method for simultaneous feature selection at

both the group and within-group individual variable levels, which cannot be realized using existing

variable selection methods.

Variable selection is a classic problem in statistics. The literature on this topic is too vast to be

summarized here. Traditional approaches for variable selection include the Cp (Mallows, 1973),

AIC (Akaika, 1973), and BIC (Schwartz 1978). More recently, several penalized regularization

methods have been proposed for variable selection. Examples include the bridge (Frank and

Friedman 1996), LASSO (Tishirani 1996), SCAD (Fan and Li, 2001; Fan and Peng, 2004), and

Enet (Zou and Hastie 2005), among others. These methods are designed for selecting individual

variables.

The need to select groups of variables arises in multifactor analysis of variance (ANOVA) and

nonparametric additive regression. In ANOVA, a factor with multiple levels can be represented by a

group of dummy variables. In nonparametric additive regression, each component can be expressed

as a linear combination of a set of basis functions. In both cases, the selection of important

factors or nonparametric components amounts to the selection of groups of variables. Several

recent papers have considered selecting important groups of variables using penalized methods.

Yuan and Lin (2006) proposed the group lasso method. This method is a natural extension of the

lasso, in which an L2 norm of the coefficients associated with a group of variables is used as a

unit in the penalty function. The group lasso method was extended to general loss functions by

Kim, Kim, and Kim (2006). They used the same penalty as the group lasso penalty and called

the extension the blockwise sparse regression (BSR). Zhao et al. (2006) proposed a composite

absolute penalty (CAP) for group selection, which can be considered a generalization of the group
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lasso. These studies only considered group selection, but did not address the question of individual

selection within groups. Ma and Huang (2007) proposed a clustering threshold gradient descent

regularization (CTGDR) method that selects variables at both the group and individual variable

levels. However the CTGDR does not optimize a well-defined objective function, thus it is difficult

to study its theoretical properties.

In many problems, it is important to be able to carry out feature selection at the group and

within-group individual variable levels simultaneously. In regression models, for a group of

variables, even when the group as a whole is important, the effects of some variables in this group

may not be important. It is desirable to select the important ones from this selected group. In

nonparametric additive modeling, it is often the case that a saturated set of basis functions is used.

In addition to the component selection, it is useful to select the basis functions to achieve a more

sparse representation of the selected component. As a specific example, consider the Impact study

that was designed to determine the effects of different risk factors on body mass index (BMI) of

high school students in two Seattle public schools. Table 2 shows the variables that were collected

in this study. These variables can be naturally divided into eight groups. It is of interest to know

which groups have a significant impact on the BMI as well as the variables in these groups that are

important. For example, if food consumption has a significant effect, it is of great interest to know

which food consumptions have significant impacts and which do not.

The proposed group bridge method is the first penalized regularization method that is capable

of two-level selection. As it is shown in Section 3, this method has the powerful oracle selection

property, that is, it can correctly select important groups with probability converging to one. In

contrast, the group lasso method does not possess such an oracle property in group selection. The

simulation studies reported in Section 4 show that the group bridge has superior performance in

group and individual variable selection than the group lasso in a wide range of generating models.

2 The group bridge estimator

Let Xk = (X1k, . . . , Xnk)
′, k = 1, . . . , d, be the design vectors and Y = (Y1, . . . , Yn)′ be the

response vector in (1) so that the linear model is written as

Y = X1β1 + · · ·+ Xdβd + ε (2)
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with an error vector ε = (ε1, . . . , εn)′. Let A1, . . . , AJ be subsets of {1, . . . , d} representing

known groupings of the design vectors. Denote the regression coefficients in the j-th group as

βAj
= (βk, k ∈ Aj)

′. For any m × 1 vector a, denote its L1 norm ‖a‖1 = |a1| + · · · + |am|. We

consider the objective function

Ln(β) =
∥∥∥Y −

d∑

k=1

Xkβk

∥∥∥
2

2
+ λn

J∑
j=1

cj‖βAj
‖γ

1 , (3)

where λn > 0 is the penalty level and cj are constants for the adjustment of the different dimensions

of βAj
. A simple choice is cj ∝ |Aj|1−γ , where |Aj| is the cardinality of Aj . In (3), the bridge

penalty is applied on the L1 norms of the grouped coefficients. Therefore, we call the β̂n that

minimizes (3) a group bridge estimator. Here the groups Aj are allowed to overlap and their union

is allowed to be a proper subset of the whole so that variables not in ∪J
j=1Aj are not penalized.

When |Aj| = 1, 1 ≤ j ≤ J , (3) simplifies to the standard bridge criterion. As will be explained

below, when 0 < γ < 1, the group bridge criterion (3) can be used for variable selection at the

group and individual variable levels simultaneously.

2.1 Computation

Direct minimization of Ln(β) is difficult, since the group bridge penalty is not a convex function

for 0 < γ < 1. We formulate an equivalent minimization problem that is easier to solve

computationally. For 0 < γ < 1, define

S1n(β,θ) =
∥∥∥Y −

d∑

k=1

Xkβk

∥∥∥
2

2
+

J∑
j=1

θ
1−1/γ
j c

1/γ
j ‖βAj

‖1 + τ

J∑
j=1

θj, (4)

where τ is a penalty parameter.

Proposition 1. Suppose 0 < γ < 1. If λn = τ 1−γγ−γ(1− γ)γ−1, then β̂n minimizes Ln(β) if and

only if (β̂n, θ̂) solves

minimize S1n(β,θ) subject to θ ≥ 0,

for some θ̂ ≥ 0, where θ ≥ 0 means θj ≥ 0, j = 1, . . . , J .

This proposition is similar to the characterization of the component selection and smoothing
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method of Lin and Zhang (2006). Examining the form of S1n in (4), we see that the minimization

of S1n with respect to (β, θ) yields sparse solutions at the group and individual variable levels.

Specifically, the penalty is an adaptively weighted L1 penalty, so the solution is sparse in β. On

the other hand, for 0 < γ < 1, small θj will force βAj
= 0, which leads to group selection.

Based on Proposition 1, we propose the following iterative algorithm.

Step 1. Obtain an initial estimate β(0).

For s = 1, 2, . . .,

Step 2. Compute

θ
(s)
j = cj

(1− γ

τγ

)γ

‖β(s−1)
Aj

‖γ
1 , j = 1, . . . , J. (5)

Step 3. Compute

β(s) = arg min
β

∥∥∥Y −
d∑

k=1

Xkβk

∥∥∥
2

2
+

J∑
j=1

(θ
(s)
j )1−1/γc

1/γ
j ‖βAj

‖1. (6)

Step 4. Repeat steps 2-3 until convergence.

This algorithm always converges, since at each step it decreases the objective function (4),

which is nonnegative. The main computational task is step 3, which is a lasso problem and can be

solved efficiently using the Lars algorithm (Efron et al. 2004). In general, this algorithm converges

to a local minimizer depending on the initialization β(0), since the group bridge penalty is not

convex. In this article, we focus on full rank designs, where the unbiased least squares estimator is

a natural initial estimator.

2.2 Tuning parameter selection

For a fixed λn, let β̂n = β̂n(λn) be the group bridge estimate of β. Let θ̂nj , j = 1, . . . , J , be the

jth component of θ̂n = θ̂(β̂n(λn)) as defined in (5). Let X = (X1, . . . ,Xd) be the n×d covariate

matrix. The Karush-Kuhn-Tucker condition for (6) implies that

2
(
Y −X β̂n

)′
Xk =

∑

j:Aj3k

θ̂
1−1/γ
nj c

1/γ
j sgn

(
β̂nk

)
, ∀ β̂nk 6= 0. (7)
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Since sgn(βnk) = βnk/|βnk|, this allows us to write the fitted response vector as

Ŷ = X β̂n = Xλn [X ′
λn
Xλn + 0.5Wλn ]−1X ′

λn
Y,

where Xλn is the sub-matrix of X whose columns correspond to the covariates with nonzero

estimated coefficients for the given λn and Wλn is the diagonal matrix with diagonal elements

∑

Aj3k

θ̂
1−1/γ

nj c
1/γ
j /|β̂nk|, β̂nk 6= 0.

Therefore, the number of effective parameters with a given λn can be approximated by

d(λn) = trace(Xλn [X ′
λn
Xλn + 0.5Wλn ]−1X ′

λn
).

This procedure is close to Fu (1998) but also resembles the tuning parameter selection method in

Tibshirani (1996) and Zhang and Lu (2006).

An AIC-type criterion for choosing λn is

AIC(λn) = log(‖Y −X β̂n(λn)‖2
2/n) + 2d(λn)/n.

A GCV-type score (Wahba 1990) is defined as

GCV(λn) =
‖Y −X β̂n(λn)‖2

2

n(1− d(λn)/n)2
.

It can be seen that these two criterions are close to each other when d(λn) is relatively small

compared to n.

Although GCV and AIC are reasonable criteria for tuning, they tend to select more variables

than the true model contains. So we also consider a BIC-type criterion

BIC(λn) = log(‖Y −X β̂n(λn)‖2
2/n) + log(n)d(λn)/n.

The tuning parameter λn is selected via minimization of AIC(λn), GCV(λn), or BIC(λn). In

general, the AIC- and GCV-type criterions are appropriate if the model is used for prediction,
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and the BIC-type criterion should be used if the purpose of the analysis is to uncover the model

structure (Yang 2003).

2.3 Variance estimation

The covariance matrix of β̂n(λn) is estimated in a similar way as Tibshirani (1996)’s covariance

estimate for the lasso estimator. Let B1 = B1(λn) = {k : β̂nk 6= 0} be the set of selected variables

and β̂nB1
(λn) = (β̂nk(λn) : k ∈ B1) be the nonzero components of β̂n(λn) given λn. By (7),

β̂nB1
(λn) = [X ′

λn
Xλn + 0.5Wλn ]−1X ′

λn
Y,

so that the covariance matrix of β̂nB1
(λn) can be approximated by

[X ′
λn
Xλn + 0.5Wλn ]−1X ′

λn
Xλn [X ′

λn
Xλn + 0.5Wλn ]−1σ̂2, (8)

where σ̂2 = ‖Y −X β̂n(λn)‖2
2/(n− d(λn)).

2.4 Comparison with the group lasso

The group lasso estimator of Yuan and Lin (2006) is

β̃n = arg min
β

∥∥∥Y −
d∑

k=1

Xkβk

∥∥∥
2

2
+ λn

J∑
j=1

‖βAj
‖Kj ,2, (9)

where Kj is a positive definite matrix and ‖βAj
‖Kj ,2 = (β′Aj

KjβAj
)1/2. A typical choice of Kj

suggested by Yuan and Lin (2006) is Kj = |Aj|Ij , where Ij is the |Aj| × |Aj| identity matrix.

Let τ be a penalty parameter and define

S2n(β,θ) =
∥∥∥Y −

d∑

k=1

Xkβk

∥∥∥
2

2
+

J∑
j=1

θ−1
j ‖βAj

‖2
Kj ,2 + τ

J∑
j=1

θj. (10)

Proposition 2. Let τ = 2−2λ2
n. Then β̃n satisfies (9) if and only if (β̃n, θ̃) solves

minimize S2n(β,θ) subject to θ ≥ 0
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for some θ̃ ≥ 0.

From this proposition, the group lasso behaves like an “adaptively weighted ridge regression”,

in which the sum of the squared coefficients in group j is penalized by θj , and the sum of θj’s is

in turn penalized by τ . Therefore, in minimizing (10), either βAj
= 0, in which case the group is

dropped from the model, or βAj
6= 0, in which case all the elements of βAj

are non-zero and all

the variables in group j are retained in the model. So the group lasso selects groups of variables,

but it does not select individual variables within groups.

3 Asymptotic properties

In this section, we study the asymptotic properties of the group bridge estimators. We show that,

for 0 < γ < 1, the group bridge estimators correctly select groups with nonzero coefficients

with probability converging to one under reasonable conditions. We also derive the asymptotic

distribution of the estimators of the nonzero coefficients.

Without loss of generality, suppose that

βAj
6= 0, 1 ≤ j ≤ J1, βAj

= 0, J1 + 1 ≤ j ≤ J. (11)

Let B2 = ∪J
j=J1+1Aj be the union of the groups with zero coefficients and B1 = Bc

2. Let βBj
=

(βk, k ∈ Bj)
′, j = 1, 2. Assume without loss of generality that the index k is arranged so that

β = (β′B1
,β′B2

)′. Let β0 be the true value of β. Since β0B2
= 0, the true model is fully explained

by the first J1 groups. In this notation, β̂nB1
and β̂nB2

are respectively the estimates of βB1
and

βB2
from the group bridge estimator β̂n. Set X = (X1, . . . , Xd) and X1 = (Xk, k ∈ B1). Define

Σn = n−1X ′X and Σ1n = n−1X ′
1X1.

Let ρn and ρ∗n be the smallest and largest eigenvalues of Σn. We consider the following conditions.

(A1) The errors ε1, ε2, . . . εn are uncorrelated with mean zero and finite variance σ2.

(A2) The maximum multiplicity C∗
n = maxk

∑J
j=1 I{k ∈ Aj} is bounded and

λ2
n

nρn

J1∑
j=1

c2
j‖β0Aj

‖2γ−2
1 |Aj| ≤ σ2dMn, Mn = O(1). (12)
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(A3) The constants cj are scaled so that minj≤J cj ≥ 1 and

λnρ
1−γ/2
n

d1−γ/2ρ∗nnγ/2
→∞. (13)

Condition (A1) is standard in linear regression. Conditions (A2) and (A3) both require full rank

design, rank(X ) = d ≤ n. Still, we allow the number of covariates d = dn to grow at certain rate

n > dn →∞. For fixed unknown {B1, β0B1 , J1}, (A2) and (A3) are consequences of

1

ρn

+ ρ∗n +

J1∑
j=1

c2
j = O(1),

λn

n1/2
→ λ0 < ∞,

λndγ/2

dnγ/2
→∞, (14)

provided cj ≥ 1 and C∗
n = O(1). This allows dn = o(1)n(1−γ)/(2−γ). It is clear from (14) that (A2)

and (A3) put restrictions on the magnitude of the penalty parameter. In particular, they exclude the

case γ ≥ 1.

Theorem 1. (Group-bridge lasso) Suppose that 0 < γ < 1.

(i) Suppose (A1), (A2) and (A3) hold. Then, β̂nB2
= 0 with probability converging to 1.

(ii) Suppose {B1,β0B1
, J1} are fixed unknowns and (14) holds. Suppose further that

Σ1n → Σ1, n−1/2X ′
1ε →D W ∼ N(0, σ2Σ1).

Then,

(a) (Group selection consistency)

P
{
β̂nB2

= 0
} → 1.

(b) (Asymptotic distribution of nonzero group estimators)

√
n
(
β̂nB1

− β0B1

) →D arg min
{

V1(u) : u ∈ IR|B1|
}

,

where

V1(u) = −2u′W + u′Σ1u
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+γλ0

J1∑
j=1

cj‖β0Aj
‖γ−1

1

∑

k∈Aj∩B1

{
uksgn(β0k)I(β0k 6= 0) + |uk|I(β0k = 0)

}
.

In particular, when λ0 = 0,

√
n
(
β̂nB1

− β0B1

) →D Σ−1
1 W ∼ N(0, σ2Σ−1

1 ).

Part (a) of Theorem 1 is of particular interest. It states that the group bridge estimates of

the coefficients of the zero groups are exactly equal to zero with probably converging to one. This,

together with part (b), imply that the group bridge estimator is able to correctly distinguish nonzero

groups from zero groups eventually. Therefore, the group bridge estimator has the powerful

asymptotic oracle property in group selection. Part (b) shows that the estimator of nonzero

coefficients is n1/2-consistent and in general converges to the argmin of the Gaussian process V1.

When λ0 > 0, the limiting distribution puts positive probability at 0.

The proof of Theorem 1 is given in the appendix. Since Theorem 1 is valid in the case of

Aj = {j}, j = 1, . . . , d, it generalizes the result of Huang et al. (2006), which showed selection

consistency and asymptotic distribution for the bridge estimator of Frank and Friedman (1996). In

this case, there is no need to select within groups and λn/
√

n → 0 seems appropriate.

For iid errors, the assumption n−1/2X ′
1ε →D W ∼ N(0, σ2Σ1) follows from the Lindeberg

central limit theorem under Σ1n → Σ1, cf. Van der Vaart (1998). To compare the different

asymptotic properties of the group bridge and group lasso estimators, we present the following

theorem for the group lasso estimator of Yuan and Lin (2006).

Theorem 2. (Group lasso) Suppose {β, d, Aj, cj, Kj, j ≤ J} are all fixed as n → ∞ and that εi

are iid errors with Eεi = 0 and Var(εi) = σ2 ∈ (0,∞). Suppose further that the d × d matrices

Σn converges to a positive-definite matrix Σ and λnn
−1/2 → λ0 < ∞. Then

√
n(β̃n − β0) →D arg min

{
V (u) : u ∈ IRd

}

where for some W ∼ N(0, σ2Σ)

V (u) = −2u′W + u′Σu + λ0

J∑
j=1

cj

[
u′Aj

Kjβ0Aj

‖β0Aj
‖Kj ,2

I(βAj
6= 0) + ‖uAj

‖Kj ,2I(β0Aj
= 0)

]
.
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By Theorem 2, when λ0 = 0, the group lasso estimator has the same asymptotic distribution

as the least squares estimator. Therefore, it is required that λ0 > 0 for the group lasso to carry

out group selection. When λ0 > 0, the asymptotic distribution of β̃n puts positive probability at

0 when βAj
= 0. However, in general, this positive probability is less than one. Thus, the group

lasso is in general not consistent in selecting the nonzero groups.

The proof of Theorem 2 is similar to that of part (b) of Theorem 1, so it is omitted. When

|Aj| = 1, 1 ≤ j ≤ J , this theorem simplifies to the result on lasso of Knight and Fu (2000).

4 Numerical Studies

4.1 Simulation study

We use simulation to evaluate the finite sample performance of the group bridge estimator. As a

comparison, we also look at the group lasso estimator in the simulation. The group lasso estimator

is computed using the algorithm in Yuan and Lin (2006). We consider 3 scenarios of simulation

models. For the generating models in the first scenario (Examples 1 and 2), the number of groups

is small, the group sizes are equal and relatively large. In the second scenario (Examples 3 and 4),

the number of groups is relatively large, the group sizes are equal and small. In each of these two

scenarios, we consider two types of models. In the first type, the coefficients are either all nonzero

or zero. In the second type, there are zero coefficients in a nonzero group. For the generating

models in the third scenario (Examples 5 and 6), the group sizes vary. There are zero coefficients

in a nonzero group in both examples. We use γ = 0.5 in the group bridge estimator. The sample

size n = 200 in each example.

Example 1. In this example, there are 5 groups, each with 8 covariates. The coefficients in each

group are either all nonzero or all zero. First simulate R1, . . . , R40 independently from the standard

normal distribution. Next, simulate Zj , j = 1, . . . , 5 from the standard normal distribution with

an AR(1) structure, i.e., Cov(Zj1 , Zj2) = 0.4|j1−j2| for 1 ≤ j1, j2 ≤ 4. Then the covariate vector

(X1, . . . , X40)
′ consists of

X5(j−1)+k = (Zj + R4(j−1)+k)/
√

2, 1 ≤ j ≤ 5, 1 ≤ k ≤ 8.
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The random error ε ∼ N(0, 22). The response vector is computed using model (1) with

β = (0.5, 1, . . . , 3.5, 4︸ ︷︷ ︸
8

, 2, . . . , 2︸ ︷︷ ︸
8

, 0, . . . , 0︸ ︷︷ ︸
24

)′.

The group ID for the covariate vector is (1, . . . , 1︸ ︷︷ ︸
8

, 2, . . . , 2︸ ︷︷ ︸
8

, 3, . . . , 3︸ ︷︷ ︸
8

, 4, . . . , 4︸ ︷︷ ︸
8

, 5, . . . , 5︸ ︷︷ ︸
8

).

Example 2. Similar to Example 1, there are a small number of groups but large group size. The

covariates are generated the same way as in Example 1, except that here

β = (0, 1, 0, 2, 0, 3, 0, 4︸ ︷︷ ︸
8

, 2, 2, 2, 2, 0, 0, 0, 0︸ ︷︷ ︸
8

, 0, . . . , 0︸ ︷︷ ︸
24

)′.

Example 3. In this example, we consider a regression model that has 10 groups, each with 4

covariates. In each group, the coefficients are either all non-zero or all zero. The data are generated

as follows. Let (Z1, . . . , Z10) be a multivariate normal random vector with marginal distribution

N(0, 1). The covariance between Zj and Zj′ is 0.6|j−j′|. The covariate vector is (X1, . . . , X40)
′

with

X4(j−1)+k = I(
k

5
< Φ(Zj) ≤ k + 1

5
), j = 1, . . . , 10, k = 1, . . . , 4.

The group ID for the covariate vector is (1, 1, 1, 1︸ ︷︷ ︸
4

, 2, 2, 2, 2︸ ︷︷ ︸
4

, . . . , 10, 10, 10, 10︸ ︷︷ ︸
4

). The response Y

was then calculated based on model (1) with

β = (3, 3, 3, 3︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
4

, −4,−4,−4,−4︸ ︷︷ ︸
4

, 4,−3,−4, 3︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
24

)′,

and ε is normally distributed with mean 0 and variance 4.

Example 4. Both the covariates and random errors are simulated in the same way as in Example

3. The underlying coefficient vector is

β = (0, 0, 3, 3︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
4

, −4, 0, 0,−4︸ ︷︷ ︸
4

, 4,−3, 0, 0︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
24

)′.

In this example, there are coefficients in the non-zero group.

Example 5. In this example, the model has groups of different sizes. The covariates are generated

in much the same way as in Example 3. First simulate Zi, i = 1, . . . , 6 and R1, . . . , R42
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independently from the standard normal distribution. Then the covariate (X1, . . . , X42)
′ are formed

as follows:

Xj = (Zgj
+ Rj)/

√
2, 1 ≤ j ≤ 42.

where g′ = (g1, . . . , g42) = (1, . . . , 1︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

, 3, . . . , 3︸ ︷︷ ︸
10

, 4, . . . , 4︸ ︷︷ ︸
4

, 5, . . . , 5︸ ︷︷ ︸
4

, 6, . . . , 6︸ ︷︷ ︸
4

) is the group

ID vector. The random error ε is sampled from N(0, 22). The response vector is computed using

(1) with β′ = (β′1, . . . , β
′
6) with

β′1 = (0.5,−2, 0.5, 2,−1, 1, 2,−1.5, 2,−2), β′2 = (−1.5, 2, 1,−2, 1.5, 0, . . . , 0︸ ︷︷ ︸
5

),

β′3 = (0, . . . , 0︸ ︷︷ ︸
10

), β′4 = (2,−2, 1, 1.5), β′5 = (−1.5, 1.5, 0, 0), β′6 = (0, . . . , 0︸ ︷︷ ︸
4

).

Example 6. The generating model is the same as Example 5 except that β2 = (−1.5, 2, 0, . . . , 0︸ ︷︷ ︸
8

)′.

So in this model, there is a sparse group.

For these examples, the simulation results based on 400 replications are summarized in Table 1.

For the group bridge estimators, we considered AIC, BIC, and GCV for determining the penalty

parameter. The variable selection and coefficient estimation results based on GCV are similar to

those using AIC and thus omitted. For the group lasso, we considered Cp, AIC, and BIC. The

results based on AIC are similar to those based on Cp. Because the Cp method was suggested by

Yuan and Li (2006), we included the Cp and BIC results in Table 1.

The first column in Table 1 gives the number of nonzero groups and coefficients in the

generating models, for example, in Example 1, there are 2 nonzero groups and 16 nonzero

coefficients. The model error is computed as (β̂ − β)′E[XX ′](β̂ − β), where β is the generating

value. The row in “No. of groups” gives the number of groups selected, averaged over 400

replications. The row in “No. of coefs ” counts the average number of variables selected. The

“% correct mod” shows the percentage that the model produced contains exactly the same groups

as the underlying model. In the parentheses are the corresponding standard deviations.

Comparing different tuning parameter selection methods, for both the group lasso and group

bridge, the BIC does better than the AIC or Cp in terms of variable selection, in that it has a greater

chance of selecting the true underlying model. The group bridge with tuning parameter selected

based on BIC produces better results in terms of model selection and model errors. However, for
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the group lasso, the tuning parameters selected by BIC yield larger model errors.

From Table 1, we see that there are improvements of the group bridge with BIC over the

group lasso with BIC or Cp in terms of model error, the number of groups selected, the number of

variables selected, and the percentage of correct model selected. In particular, the improvements in

the category of the percentage of correctly selected models is considerable. In general, the group

lasso tends to select more groups and variables than there actually are in the generating models

using either Cp or BIC for tuning parameter selection. This agrees with the simulation results

reported in Yuan and Lin (2006). In comparison, the number of groups and variables in the models

selected by the group bridge with BIC are close to the generating values. The only exception is in

Example 3, in which the group lasso does better in terms of number of selected groups.

To examine the selection results for each covariate, we plot the percentage of the 400

replications when a coefficient is estimated exactly at zero (i.e., the associated covariate is not

selected). The results in Figures 1 and 2. In each plot in these figures, triangles represent results

from BIC tuning parameter selection; solid dots represent results from Cp for group lasso or AIC

for group bridge. Also in each plot, the small circles on the horizontal axis indicate nonzero

coefficients in the generating model. For example, in the upper left panel of Figure 1, there are

four circles at 1, 2, 3, and 4, indicating that the first 4 coefficients in Example 1 are nonzero.

From Figures 1 and 2, we see that the group bridge estimates have higher percentage of correctly

identifying zero coefficients than the group lasso.

We also looked at the performance of the proposed standard error estimation method. As

examples, Table 2 shows the empirical and estimated standard errors of the group bridge estimates

of coefficients β2 and β12. In general, when the BIC is used in tuning parameter selection, the

proposed method tends to slightly underestimate true sampling variabilities, but otherwise appears

to provides reasonable standard error estimates. The slight underestimation is perhaps due to the

effect of choosing tuning parameters, which is not accounted for in (8). Further studies are needed

to investigate the question of variance estimation in penalized estimation problems.

4.2 Impact study

The Impact study was part of a three-year project designed to measure the impact of nutritional

policies and environmental change on obesity in the high school students enrolled in Seattle Public
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Schools. The study description can be found at

http://depts.washington.edu/uwcphn/activities/projects/noncommercialism.html.

The study was led by University of Washington Center for Public Health Nutrition and conducted

in two urban high schools. One primary goal of this study is to determine the effects of different

risk factors on BMI (body mass index). We show in Table 3 the definitions of the variables included

in the study. Indicators are firstly created for the ethnic variable. Natural clusters exist for the risk

factors. 25 covariates can be naturally classified into different categories, measuring different

aspects such as food sources and demographics. The response variable is the logarithm of BMI.

We focus on 799 subjects with complete records.

We use the proposed group bridge approach to analyzing the data from the Impact study. For

comparison, we also consider the OLS and group lasso. The results are given in Table 4. For the

group lasso, when Cp is used in tuning parameter selection, all the 8 groups are selected in the final

model, but when BIC is used, none of the groups are selected. So the results from the group lasso

with BIC are not included in the table.

In comparison, the group bridge does not select the group of consumption of healthy food when

AIC or GCV is used. The group bridge with BIC gives rise to a sparser model and drops 3 more

groups: age, gender and unhealthy food consumption. We conclude from the group bridge estimate

that demographics, food source, unhealthy food consumption, school group and physical activity

have important effects on BMI in the Impact cohort. In the ethnicity group, the group bridge using

BIC only selects Hawaiian and Asian.

For evaluation purpose, we first randomly select a training set of size 600. The testing set is

composed of the remaining 199 records. We compute estimates using the training set only, and then

compute the prediction mean square errors (PMSE) for the testing set. The splitting, estimation

and prediction are repeated 200 times. The results are summarized in Table 5. It can be seen that

when AIC and Cp are used, the group-bridge lasso selects fewer groups and has smaller prediction

errors. When BIC is used, the group lasso rarely selects any group and yields the null model, but

its prediction errors are comparable with that produced by ordinary least squares. This suggests

that the variation of this cohort’s BMI is not very well captured by the variables measured in the

study and that other variables such as genetic factors may be of greater importance in explaining

the variation of BMI. In fact, with the full model using the least squares, the R2 value is only 8%.

Similar results have been observed in a previous study on factors that may affect BMI (Storey et
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al. 2003). We must exercise caution in interpreting the analysis results of this data set, since this is

an observational study, and most of the participating students are of African American origin. So

the results here cannot be extrapolated to the general population of high school students.

5 Discussion

The proposed group bridge approach can be applied to other regression problems when both group

and individual variable selections are desired. Specifically, we can use the group-bridge lasso

penalty in the context of the general M-estimation,

n∑
i=1

m(Yi, β0 +
d∑

k=1

Xikβk) + λn

J∑
j=1

‖βAj
‖γ

1 , (15)

where m is a given loss function. This formulation includes the generalized linear models,

censored regression models including the Cox regression, and robust regression. For example,

for the generalized linear models such as logistic regression, we take m to be the negative log-

likelihood function. For the Cox regression, we take the empirical loss function to be the negative

partial likelihood. For loss functions other than least squares, further work is needed to study the

computational algorithms and theoretical properties of the group bridge estimators.

A more general view can be adopted regarding the formulation of penalties. The group bridge

penalty is a combination of two penalties–the bridge penalty for group selection and the lasso for

within-group selection. In general, it is possible to consider combinations of different penalties, for

example, we can use the SCAD penalty for within group selection and the bridge penalty for group

selection. Different penalty functions may be preferable under different data and model settings.

Further studies are needed on the estimators with different penalties regarding the computational

algorithms and their theoretical properties.

Finally, we only considered the asymptotic properties of the group bridge estimators in the

settings when the number of covariates is smaller than the sample size. The need for two-level

selection also arises in high-dimensional problems when the number of covariates is larger than

the sample size. For example, in regression analysis of a clinical outcome, such as disease status or

survival, with high-dimensional genomic data, it is natural to consider genes in the same pathway

as a group. Typically, there is only a limited number of pathways and genes that will be important
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to a clinical outcome. Therefore, it is of interest to study the properties of the group bridge method

sparse models when the number of coviarates is larger than the sample.

6 Proofs

Proof of Proposition 1. We have minβ,θ S1n(β, θ) = minβ Ŝ1n(β), where Ŝ1n(β) =

minθ{S1n(β,θ) : θ ≥ 0}. For any give β,

θ̂(β) ≡ arg min{S1n(β,θ) : θ ≥ 0} = arg min
{ J∑

j=1

θ
1−1/γ
j c

1/γ
j ‖βAj

‖1 + τ

J∑
j=1

θj,θ ≥ 0
}

.

Therefore, θ̂(β) = (θ̂1(β), . . . , θ̂d(β))′ must satisfy

(1/γ − 1)θ
−1/γ
j (β)c

1/γ
j ‖βAj

‖1 = τ, j = 1, . . . , J.

Write Ŝ1n(β) = S1n(β, θ̂(β)) and substitute the expressions

θj(β) =
(1− γ

γ

)γ

cj‖βAj
‖γ

1τ
−γ, θ

1−1/γ
j (β) =

( γ

1− γ

)1−γ c
1−1/γ
j τ 1−γ

‖βAj
‖1−γ

1

into S1n(β, θ̂(β)), we get, after some algebra,

Ŝ1n(β) =
∥∥∥Y −Xβ

∥∥∥
2

2
+ λn

J∑
j=1

cj‖βAj
‖γ

1 .

Here we used λn = τ 1−γ
{
(1/γ − 1)γ + (1/γ − 1)γ−1

}
, so that Ŝ1n(β) = Ln(β). ¤

Theorem 1 is proved by establishing the following results in three steps: (a) estimation

consistency and rate of convergence (Lemma 1); (b) variable-selection consistency (Lemma 2 and

part (i) of Theorem 1); and (c) asymptotic distribution (part (ii) of Theorem 1).

Recall that ‖β0Aj
‖2 = 0 iff j > J1 by (11) and condition (A2) gives

λ2
nη

2
n

nρn

≤ σ2dMn for ηn =
( J1∑

j=1

c2
j‖β0Aj

‖2γ−2
1 |Aj|

)1/2

and Mn = O(1). (16)
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Lemma 1. Suppose conditions (A1) and (A2) hold with 0 < γ ≤ 1. Then,

E‖β̂n − β0‖2
2 ≤

σ2d

nρn

(
8 + 16C∗

nMn

)
, (17)

where ρn is the smallest eigenvalue of Σ = X ′X/n.

Proof of Lemma 1. By the definition of β̂n,

‖Y −X β̂n‖2
2 + λn

J∑
j=1

cj‖β̂nAj
‖γ

1 ≤ ‖Y −Xβ0‖2
2 + λn

J∑
j=1

cj‖β0Aj
‖γ

1 .

Since bγ − aγ ≤ 2(b− a)bγ−1 for 0 ≤ a ≤ b, by Cauchy-Schwarz

J∑
j=1

cj‖β0Aj
‖γ

1 −
J∑

j=1

cj‖β̂nAj
‖γ

1 ≤ 2

J1∑
j=1

cj‖β0Aj
‖γ−1

1 ‖β̂nAj
− β0Aj

‖1

≤ 2

J1∑
j=1

cj‖β0Aj
‖γ−1

1

(
|Aj|‖β̂nAj

− β0Aj
‖2

2

)1/2

≤ 2ηn

( J1∑
j=1

‖β̂nAj
− β0Aj

‖2
2

)1/2

.

Since
∑J

j=1 ‖β̂nAj
− β0Aj

‖2
2 ≤ C∗

n‖β̂n − β0‖2
2, the combination of the above inequalities yields

2λnηn

√
C∗

n‖β̂n − β0‖2 ≥ ‖Y −X β̂n‖2
2 − ‖Y −Xβ0‖2

2

= ‖X (β̂n − β0)‖2
2 + 2ε′X (β0 − β̂n). (18)

Let δn = ‖X (β̂n − β0)‖2 and ε∗ be the projection of ε to the span of {X1, . . . ,Xd}. By Cauchy-

Schwarz, 2|ε′X (β0 − β̂n)| ≤ 2‖ε∗‖2δn ≤ 2‖ε∗‖2 + δ2
n/2, so that by (18)

δ2
n ≤ 4‖ε∗‖2

2 + 4λnηn

√
C∗

n‖β̂n − β0‖2.

Moreover, since ρn is the smallest eigenvalue of X ′X /n, the above inequality implies

nρn‖β̂n − β0‖2
2 ≤ δ2

n ≤ 4‖ε∗‖2
2 + 4λnηn

√
C∗

n‖β̂n − β0‖2
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Since ε∗ is the projection of ε to a d-dimensional space, E‖ε∗‖2
2 ≤ σ2d. Thus,

E‖β̂n − β0‖2
2 ≤ 4σ2d/(nρn) + {4λnηn

√
C∗

n/(nρn)}
(
E‖β̂n − β0‖2

2

)1/2

≤ 4σ2d/(nρn) + {4λnηn

√
C∗

n/(nρn)}2/2 +
1

2
E‖β̂n − β0‖2

2.

This completes the proof of the lemma in view of (16). ¤

Lemma 2. Suppose the conditions (A1), (A2) and (A3) hold with 0 < γ < 1. Then,

P
{

β̂nAj
= 0 ∀j > J1

}
→ 1. (19)

Proof. Let B2 = ∪J
j=J1+1Aj and define β̃n = (β̃n1, . . . , β̃nd)

′ by

β̃nk =





β̂nk k 6∈ B2

0 k ∈ B2.

Since θ̂
1−1/γ
nj c

1/γ
j ‖β̂Aj

‖1 = γλncj‖β̂Aj
‖γ

1 by (5), (7) implies

2
(
Y −X β̂n

)′
Xk = γλn

∑

Aj3k

cj‖β̂nAj
‖γ−1

1 sgn
(
β̂nk

)
, β̂nk 6= 0.

Since (β̂nk − β̃nk)sgn(β̂nk) = |β̂nk|I{k ∈ B2}, we have

2(Y −X β̂n)′X (β̂ − β̃n) =
∑

k∈B2

|β̂nk|γλn

∑

Aj3k

cj‖β̂nAj
‖γ−1

1

= γλn

J∑
j=1

cj‖β̂Aj
‖γ−1

1

(
‖β̂nAj

‖1 − ‖β̃nAj
‖1

)

Since γbγ−1(b− a) ≤ bγ − aγ for 0 ≤ a ≤ b, for j ≤ J1 we have

γ‖β̂nAj
‖γ−1

1

(
‖β̂nAj

‖1 − ‖β̃nAj
‖1

)
≤ ‖β̂nAj

‖γ
1 − ‖β̃nAj

‖γ
1 .
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Due to ‖β̃nAj
‖1 = 0 for j > J1, this implies

2
∣∣∣(Y −X β̂n)′X (β̂ − β̃n)

∣∣∣ ≤ λn

J1∑
j=1

cj

(
‖β̂nAj

‖γ
1 − ‖β̃nAj

‖γ
1

)
+ γλn

J∑
j=J1+1

cj‖β̂nAj
‖γ

1 . (20)

Similar to the proof of Lemma 1, the definition of β̂n gives

‖Y −X β̂n‖2
2 + λn

J∑
j=1

cj‖β̂nAj
‖γ

1 ≤ ‖Y −X β̃n‖2
2 + λn

J∑
j=1

cj‖β̃nAj
‖γ

1 .

Since ‖β̃nAj
‖1 = 0 for j > J1, by (20)

2
∣∣∣(Y −X β̂n)′X (β̂ − β̃n)

∣∣∣ + (1− γ)λn

J∑
j=J1+1

cj‖β̂nAj
‖γ

1

≤ λn

J∑
j=1

cj‖β̂nAj
‖γ

1 − λn

J∑
j=1

cj‖β̃nAj
‖γ

1

≤ ‖Y −X β̃n‖2
2 − ‖Y −X β̂n‖2

2

= ‖X (β̂n − β̃n)‖2
2 + 2(Y −X β̂n)′X (β̂n − β̃n).

Thus, since nρ∗n is the largest eigenvalue of X ′X and β̂nk − β̃nk = β̂nkI{k ∈ B2},

(1− γ)λn

J∑
j=J1+1

cj‖β̂nAj
‖γ

1 ≤ ‖X (β̂n − β̃n)‖2
2 = nρ∗n‖β̂nB2

‖2
2 ≤ nρ∗n‖β̂n − β0‖2

2,

which implies by Lemma 1 and C∗
nMn = O(1) in Condition (A2) that

(1− γ)λn

J∑
j=J1+1

cj‖β̂nAj
‖γ

1 ≤ nρ∗n‖β̂nB2
‖2

2 ≤ OP (σ2dρ∗n/ρn). (21)

We still need to find a lower bound of
∑J

j=J1+1 cj‖β̂nAj
‖γ

1 . Since cj ≥ 1 by (A3),

J∑
j=J1+1

cj‖β̂nAj
‖γ

1 ≥
( J∑

j=J1+1

‖β̂nAj
‖1

)γ

≥ ‖β̂nB2
‖γ

1 ≥ ‖β̂nB2
‖γ

2 . (22)
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In the event ‖β̂nB2
‖2 > 0, the combination of (21) and (22) yields

(1− γ)λn ≤ nρ∗n‖β̂nB2
‖2−γ

2 ≤ OP (1)nρ∗n
(
σ2d/(nρn)

)1−γ/2

Since λn(ρn/d)1−γ/2/(ρ∗nnγ/2) →∞ by (A3), this implies

P
{
‖β̂nB2

‖2 > 0
}
≤ P

{
λn(ρn/d)1−γ/2

ρ∗nnγ/2
≤ OP (1)

}
→ 0

The proof is complete. ¤
Proof of Theorem 1. Since (i) follows from Lemma 2, it suffices to prove (ii). Since d1 and β0B1

are fixed, minj≤J1 ‖β0Aj
‖1−γ

1 = O(1), so that (14) implies (12), (13) and

λ2
n

nρn

J1∑
j=1

c2
j‖β0Aj

‖2γ−2
1 |Aj ∩B1| = O(1). (23)

Thus, the conditions of (i) hold. Moreover, by (23), the proof of Lemma 1 still works with the

reduced design X1 and reduced total number d1 = |B1| of coefficients βk, k ∈ B1. Thus,

∥∥β̂nB1
− β0B1

∥∥2
= OP (1/n),

∥∥β̂n − β0

∥∥2
= OP (1/n).

Let hn = n−1/2 and define

V1n(u) = Ln

(
β0 + hn(u′,0′)′

)− Ln(β0)

with 0 being the zero vector of dimension |B2|. By (i), the following holds with large probability:

β̂n − β0 = hn(û′n,0′)′, ûn = arg min
{

V1n(u) : u ∈ IRd1

}
.

The function V1n(u), u ∈ IRd1 , can be written as

V1n(u) =
{
− 2hnu

′X ′
1ε + h2

nu
′X ′

1X1u
}

+ λn

J1∑
j=1

cj

{( ∑

k∈Aj∩B1

|β0k + hnuk|
)γ

− ‖β0Aj
‖γ

1

}

≡ T1n(u) + T2n(u).
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For the first term, we have

T1n(u) →D −2u′W + u′Σ1u.

For the second term,

T2n(u) → γλ0

J1∑
j=1

cj‖β0Aj
‖γ−1

1

∑

k∈Aj∩B1

{
uksgn(β0k)I(β0k 6= 0) + |uk|I(β0k = 0)

}
.

Therefore,

V1n(u) →D V1(u).

Since ûn = OP (1), by the argmin continuous mapping theorem of Kim and Pollard (1990),

√
n(β̂nB1

− β0B1
) = ûn → arg min(V1(u)). ¤
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Table 1: Examples 1-6, comparison of the group bridge and group lasso estimators

Group lasso Group bridge
Example Term Cp BIC AIC BIC
Ex. 1 Model error 0.58 (0.19) 0.65 (0.23) 0.55 (0.20) 0.47 (0.17)
2 No. of groups 3.91 (0.94) 2.33 (0.52) 4.00 (0.82) 2.07 (0.31)

16 No. of coefs 31.24 (7.46) 18.66 (4.14) 24.34 (4.25) 16.15 (0.79)
% correct mod 8.50 (27.92) 69.00 (46.31) 5.25 (22.33) 94.75 (22.33)

Ex. 2 Model error 0.57 (0.19) 0.64 (0.22) 0.45 (0.21) 0.30 (0.21)
2 No. of groups 3.89 (0.97) 2.32 (0.50) 3.50 (1.10) 2.01 (0.11)
8 No. of coefs 31.12 (7.72) 18.58 (4.03) 20.09 (6.11) 10.94 (1.35)

% correct mod 10.00 (30.04) 69.50 (46.10) 26.75 (44.32) 98.75 (11.12)

Ex. 3 Model error 0.75 (0.49) 0.82 (0.43) 0.79 (0.47) 0.56 (0.34)
3 No. of groups 7.02 (1.76) 3.69 (0.80) 6.86 (1.67) 3.79 (0.94)

12 No. of coefs 28.09 (7.04) 14.74 (3.21) 21.32 (4.81) 13.29 (1.79)
% correct mod 2.75 (16.37) 49.50 (50.06) 2.00 (14.02) 49.50 (50.06)

Ex. 4 Model error 0.72 (0.45) 0.76 (0.33) 0.62 (0.41) 0.35 (0.20)
3 No. of groups 6.923 (1.87) 3.69 (0.83) 6.23 (1.85) 3.28 (0.64)
6 No. of coefs 27.69 (7.473) 14.76 (3.34) 18.07 (5.42) 9.34 (1.70)

% correct mod 4.75 (21.30) 50.00 (50.06) 8.75 (28.29) 80.50 (39.67)

Ex. 5 Model error 0.884 (0.25) 1.088 (0.343) 0.75 (0.24) 0.74 (0.26)
4 No. of groups 5.76 (0.475) 4.75 (0.653) 5.16 (0.72) 4.14 (0.38)

21 No. of coefs 40.68 (2.94) 33.14 (5.020) 31.06 (3.575) 24.78 (1.67)
% correct mod 2.00 (14.02) 37.25 (48.41) 19.00 (39.28) 87.25 (33.39)

Ex. 6 Model error 0.86 (0.24) 1.07 (0.33) 0.69 (0.23) 0.63 (0.23)
4 No. of groups 5.71 (0.50) 4.67 (0.62) 5.10 (0.74) 4.12 (0.34)

18 No. of coefs 40.39 (3.18) 32.53 (4.78) 29.28 (3.94) 21.90 (1.85)
% correct mod 2.00 (14.02) 41.50 (49.33) 22.75 (89.25) 89.25 (31.01)
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Table 2: Standard deviation estimates of the group bridge estimators

AIC BIC
β̂4 β̂12 β̂4 β̂12

Act. SE Mean ŜE Act. SE Mean ŜE Act. SE Mean ŜE Act. SE Mean ŜE
Ex. 1 0.21 0.20 0.21 0.20 0.20 0.18 0.20 0.17
Ex. 2 0.20 0.19 0.21 0.19 0.19 0.19 0.19 0.19
Ex. 3 0.52 0.48 0.64 0.55 0.52 0.47 0.62 0.54
Ex. 4 0.47 0.41 0.54 0.43 0.43 0.37 0.46 0.40
Ex. 5 0.20 0.20 0.21 0.20 0.19 0.20 0.20 0.19
Ex. 6 0.19 0.20 0.20 0.19 0.19 0.20 0.19 0.17
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Table 3: Impact study: dictionary of covariates. Type: type of variable. C–continuous; B–binary.

Group Variable Type Definition
Age V1 C Age

V2 C Age2

Gender V3 B Female Gender
Ethinicity V4 B Ethnic (American Indian/Alaska native)

V5 B Ethnic (Hispanic/Latino)
V6 B Ethnic (Asian)
V7 B Ethnic (Native Hawaiian/Pacific Islander)
V8 B Ethnic (White)
V9 B Ethnic (Do not know)
V10 B No answer
V11 B Bi/multi-racial
V12 B Speaking other language

Food source V13 B Breakfast/lunch from cafeteria more than 3 times per week
V14 B Food from a la carte more than 3 times per week
V15 B Fast food
V16 B Food from home more than 3 times per week

Consumption V17 C Soda
(Unhealthy) V18 B Candy

V19 B Chips
V20 B Cake
V21 B Ice cream

Consumption V22 C Milk
(Healthy) V23 C Fruit and vegetable
School V24 B CL
Physical Activity V25 C Mild physical activity

V26 C Hard physical activity
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Table 4: Impact study: estimates from different approaches .

ID Var. abbr. OLS Glasso-Cp Group brige-AIC/GCV Group brige-BIC
V1 Age .1317 (.2131) .0913 0 (−) 0 (−)
V2 Age2 −.0047 (.0069) −.0032 −.0001 (.0001) 0 (−)
V3 Gender .0257 (.0162) .0126 .0097 (.0079) 0 (−)
V4 Native −.0316 (.0444) −.0201 0 (0) 0 (−)
V5 Hispanic .0495 (.0361) .0396 .0228 (.0179) 0 (−)
V6 Asian −.0321 (.0299) −.0191 −.0351 (.0165) −.0268 (.0217)
V7 Hawaiian .1135 (.0342) .0844 .0910 (.0253) .0582 (.0292)
V8 White −.0216 (.0420) −.0115 0 (−) 0 (−)
V9 Unknown .0281 (.0836) .0175 0 (−) 0 (−)
V10 NoAns .0301 (.0538) .0213 0 (−) 0 (−)
V11 Bi/multi-rac. −.0243 (.0233) −.0157 −.0137 (.0123) 0 (−)
V12 Other lang. −.0433 (.0243) −.0307 −.0194 (.0113) 0 (−)
V13 Breaklunch .0105 (.0164) .0125 .0145 (.0102) .0116 (.0079)
V14 Lacarte .0106 (.0228) .0076 .0024 (.0045) 0 (−)
V15 Fastfood −.0456 (.0160) −.0373 −.0443 (.0131) −.0482 (.0122)
V16 Foodhome −.0174 (.0149) −.0135 −.0103 (.0093) .0092 (.0071)
V17 Soda −.0023 (.0048) −.0014 0 (−) 0 (−)
V18 Candy .0002 (.0174) .0009 0 (−) 0 (−)
V19 Chips −.0226 (.0181) −.0150 −.0152 (.0092) 0 (−)
V20 Cake −.0379 (.0193) −.0241 −.0267 (.0118) 0 (−)
V21 Icecream .0062 (.0200) .0048 0 (−) 0 (−)
V22 Milk .0042 (.0045) .0019 0 (−) 0 (−)
V23 Fruit .0010 (.0027) .0004 0 (−) 0 (−)
V24 School −.0269 (.0150) −.0234 −.0274 (.0125) −.0292 (.0117)
V25 Mildact −.0011 (.0034) −.0009 0 (−) 0 (−)
V26 Hardact .0071 (.0038) .0053 .0051 (.0024) .0041 (.0018)
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Table 5: BMI study, training-testing results

Group lasso Group bridge
OLS Cp BIC AIC BIC

Average no. of groups 8.00 6.38 0.03 6.09 2.68
Average no. of var’s 26.00 22.89 0.06 14.62 4.50
Median PMSE .041 .041 .042 .041 .041
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Figure 1: Frequency of each component of the group bridge and group lasso estimates being equal
to 0. Traingle: BIC. Solid dot: Cp (left column) or AIC (right column). Top left: Example 3,
group lasso; Top right: Example 3, group bridge; Bottom left: Example 4, group lasso; Bottom
right: Example 4, group bridge. In each panel, the small circles on the horizontal axis indicating
nonzero coefficients.
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Figure 2: Frequency of each component of the group bridge and group-lasso estimates being equal
to 0. Traingle: BIC. Solid dot: Cp (left column) or AIC (right column). Top left: Example 5,
group lasso; Top right: Example 5, group bridge; Bottom left: Example 6, group lasso; Bottom
right: Example 6, group bridge. In each panel, the small circles on the horizontal axis indicating
nonzero coefficients.
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